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As proposed by Ceperley and Bernu, the excited-state energies can be obtained from imaginary-time cross-
correlation functions (rather than autocorrelation functions) generated by quantum Monte Carlo (QMC)
simulations. We show that, when processed by the filter diagonalization method (FDM), the same cross-
correlation functions yield excited-state energies of higher accuracy and greater stability. The reason is that
unlike the other methods FDM uses all the time domain information available. The superior performance of
the cross-correlation FDM is demonstrated for a two-dimensional harmonic oscillator with closely lying
eigenvalues. Because QMC does not take advantage of the separability in the Hamiltonian, this model system
provides a challenging and generic test case.

1. Introduction

Most applications of the quantum Monte Carlo (QMC)
method1-3 are ground-state calculations where the ground state
is projected with a random walk, but it is well-known that
excited states can be obtained as well. If the nodes of the excited
states are known, individual excited states can be calculated
with the fixed-node approximation.4 An early application was
the tunneling splitting in (HF)2.5 Later developments involved
optimization of the excited-state nodes.6,7 Several studies have
appeared recently where fixed-node-based methods were used
to calculate excited states for electronic systems.8,9

The general alternative to the fixed-node approach is to extract
the excited states from the decay of the initial statesor initial
statessto the ground state. In this case, many excited states
can be obtained simultaneously andsin principlesexactly within
the statistical error. In this approach the ground state and excited
states are obtained from the part of the quantum simulation that
is usually discarded in ground-state QMC applications, i.e., by
using the data from a short propagation in imaginary timeâ.
Several such methods have been developed for extracting
excited-state information from the random walk. Most widely
used are the correlation function quantum Monte Carlo method
(CFQMC) by Ceperley and Bernu10,11 and the projection
operator imaginary time spectral evolution method (POITSE)
by Blume, Lewerenz, and Whaley.12,13 The CFQMC approach
has recently been used for calculating rovibrational levels;14-17

the POITSE method has been successfully applied to problems
such as tunneling splittings18 and quantum structure in helium
clusters.19-23

In this paper we show how to use the filter diagonalization
method (FDM), a method developed and presented in several
recent publications (see, e.g., refs 24-30), to obtain excited-

state energies from imaginary-time autocorrelation or cross-
correlation functions calculated with QMC.

While FDM is very successful in calculating excited states
with real-time autocorrelation functions〈Φ|eiâH|Φ〉, the difficulty
is in the typically very unfavorable scaling of the computational
effort with the system size, similar to other accurate excited-
state methods. The imaginary-time autocorrelation function
〈Φ|e-âH|Φ〉 can be obtained with a quantum Monte Carlo
method that scales much better with the system size.

Due to this scaling property, a QMC-based excited-state
method should be particularly well suited for systems with more
than a few degrees of freedom. On the other hand, it will be
analyzed how the statistical noise inherent in QMC influences
the accuracy of the calculated excited states.

There are two approaches for excited-state calculation within
the QMC framework. In the first, and most popular, one extracts
the excited-state energies from an autocorrelation function

possibly using also theH-correlation

whereΦ0 is an initial state with appropriate symmetry,H is
the full Hamiltonian, andâ is the imaginary time. Here and
throughout the paper we use the non-Hermitian inner product

If Φ0 has a nonzero overlap with the lowest state of chosen
symmetry, the resulting autocorrelation function will be domi-
nated by the monoexponential decays(â) ∼ e-âE0 for sufficiently
large â, whereE0 is the corresponding eigenenergy. IfΦ0 is
made completely or approximately orthogonal to the ground
state, the correlation functions(â) would contain a large
contribution from the first excited state of given symmetry.
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s(â) ) 〈Φ0|e-âH|Φ0〉

h(â) ) 〈Φ0|He-âH|Φ0〉

〈φ|ψ〉 ) 〈ψ|φ〉
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If the initial stateΦ0 is dominated by several states of interest
and the time signals(â) is computed with sufficiently high
accuracy, in principle all the corresponding eigenenergies may
be extracted by fittings(â) by the multiexponential decay

Practically though a multiexponential fit cannot be carried out
reliably because the corresponding inverse problem is extremely
ill-conditioned, leading to very high sensitivity ofEk to even
tiny variations ins(â). Note that this problem is closely related
to the inverse Laplace transform problem,31 which has similar
numerical properties. Generally for noisy data only a monoex-
ponential fit may be carried out reliably, i.e., whenΦ0 is
dominated by a single state of interest. Specifically, for the
ground-state calculationΦ0 could be chosen to be a Gaussian
that coincides with the ground state in harmonic approximation.
For a Gaussian distribution, sampling of the initial conditions
for the random walks is also very efficient. For a general, e.g.,
excited-state, calculation the situation is much more complicated.
As suggested in refs 12 and 13, one could implement an
appropriate projection operatorΦ0 f AΦ0 that projects, say a
Gaussian, to the first excited state by incorporating the corre-
sponding symmetry and/or nodal structure. However, in the case
of strong anharmonicity or for a multidimensional system, such
a wave function could be quite different from the true state of
interest (even a small deviation in every dimension would lead
to a large overall deviation). This will require solving eq 1 with
largeK, making the method impractical.

Another approach to ameliorate the problem,10 which is less
often applied, aims at extracting the information from the cross-
correlation matrices

Here, several different initial states (ΦR) are used. The cross-
correlation matrices contain more information than a single
correlation function; however, until recently it was not clear
how to utilize this information most efficiently for the eigenen-
ergy calculations. Therefore, applications of matrix correlation
functions have generally used subspace diagonalization, a
method in which the generalized eigenvalue problem associated
with s(â) andh(â) is solved at a particular value ofâ (which
may then be varied for stability), i.e., not using simultaneously
all the information available.

In this work we combine several methodologies mentioned
above and take advantage of using the cross-correlation matrices
rather than just a single correlation function, which are then
processed by FDM. As we show, the use of FDM allows, for a
model problem, extraction of very high quality excited-state
eigenvalues.

The rest of the paper is organized as follows. First we present
the methodology of the QMC calculation. Here we use the most
primitive version possible, since in this publication our focus
is to demonstrate the effects of FDM. Therefore, we do not use
sophisticated guiding functions which would have improved the
results further. Next, we review the FDM methodology, as used
here. A discussion of a model problem is followed by conclu-
sions.

2. Computing Correlation Functions by Quantum Monte
Carlo

Usually the diffusion quantum Monte Carlo method (DQMC)
is used to project an arbitrary initial stateΦ0 to the ground state
Ψ0. However, in the present framework, we are not interested
in the long-time (â f ∞) limit Ψ0 but in the information
generated by DQMC during short propagation timeâ.

For a set of initial statesΦR the cross-correlation functions
sRR′(n) andhRR′(â) can be computed using DQMC:

where{Rn(â)} denotes a sample of random walker positions at
propagation timeâ and walker weightwn. The initial random
walker positionsRn(0) are sampled from a distributionp(R),
and the initial weights arewn(0) ) ΦR′(Rn(0))/p(Rn(0)). As in
other applications of the quantum Monte Carlo technique, the
statistical accuracy of the calculated integrals is greatly increased
when importance sampling is employed.1,32Importance sampling
is realized with aguide functionΦG and a drift step in the
random walk toward large values of|ΦG|. Additionally, the
random walk is stabilized numerically by introducing a reference
energyEref ≈ E0 that shifts the energy such that the lowest
eigenvalue becomes approximately zero. The propagator with
importance sampling is

and the cross-correlation functions can be calculated with10

where {Rn(â)} again denotes a sample of random walker
positions at propagation timeâ and wn, the corresponding
weights. There are several ways to realize the importance-
sampled random walk, but we employ here only the simplest:
the pure DQMC algorithm described by Caffarel and Claverie.33

In this algorithm, no branching is used and the weight is
accumulated along the random walker trajectory at evenly
sampled pointsâ ) tτ (t ) 0, ...,T) according to

with the local energy EL(Rn) ) ΦG
-1(Rn) HΦG(Rn) and the

initial walker positions{Rn(0)} drawn from the distributionp(R)
) |ΦG(R)|2/〈ΦG|ΦG〉. This distribution is easily obtained with
a standard variational quantum Monte Carlo run1 which is based
on a generalized Metropolis algorithm.34,35

Similarly we can calculate the cross-correlation functionshRR′-
(â) with

s(â) ) ∑
k)1

K

dke
-âEk (1)

sRR′(â) ) 〈ΦR|e-âH|ΦR′〉

hRR′(â) ) 〈ΦR|He-âH|ΦR′〉 (2)

sRR′(â) ) 〈ΦR|e-âH|ΦR′〉 ) lim
Nf∞

1

N
∑
n)1

N

wn(â) ΦR(Rn(â))

UG(â) ) ΦGe-â(H-Eref)ΦG
-1

sRR′(â) ) 〈ΦRΦG
-1|UG(â)|ΦR′ΦG〉

) lim
Nf∞

1

N
∑
n)1

N

wn (â)
ΦR(Rn(â))

ΦG(Rn(â))

wn(tτ) )
ΦR′(Rn(0))

ΦG(Rn(0))
∏
m)1

t

exp{-
τ

p
[EL(Rn(mτ)) - Eref]}

hRR′(â) ) 〈ΦR|He-âH|ΦR′〉

) lim
Nf∞

1

N
∑
n)1

N

wn(â) EL(Rn(â)) ΦR(Rn(â))
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When employing importance sampling, we obtain analo-
gously10

The use of the cross-correlation functionssRR′(â) andhRR′(â)
with importance sampling and pure diffusion quantum Monte
Carlo was proposed by Ceperley and Bernu,10,11who used both
matrices for their correlation function quantum Monte Carlo
method (CFQMC) to extract excited states.

For a given sample sizeN the statistical accuracy ofsRR′(â)
depends on the variance of the fractionsΦR(R)/ΦG(R) andΦR′-
(R)/ΦG(R) and the variance of the local energyEL(R). All three
variances are small only whenΦR ≈ ΦR′ ≈ ΦG and ΦG is a
good approximation to an eigenfunction ofH. Obviously, these
conditions cannot be met for many excited states. There are
now two choices. One may attempt to extract a single excited
state using only one functionΦR, which approximates the
excited state of interest. The guide functionΦG is then naturally
chosen to resemble|ΦR|. In this case only the autocorrelation
functionssRR(â) andhRR(â) are used, and for each excited state
a guide function needs to be constructed and a separate random
walk needs to be performed.

Another possibility is to use a single guide function for all
excited states and use a set of initial states that approximately
span the space of the excited states of interest. Now the same
random walk can be used for calculation of all thesRR′ andhRR′
matrix elements, i.e., with minimal loss of data.

3. The Filter Diagonalization Method

In this section we describe the H-FDM version of the filter
diagonalization method designed to solve the eigenvalue
problem

H-FDM differs from the previous implementations of FDM24-27

in that both cross-correlation matricessRR′(â) andhRR′(â) (cf.
eq 2) are used explicitly (as proposed in refs 26 and 36).

The true system HamiltonianH is Hermitian. However,
because of the noise and numerical instabilities, it is not
recommended to implement the hermiticity constraint, but rather
treat H as a non-Hermitian, but complex symmetric operator
with eigenvalues, not necessarily on the real axis.

To solve eq 3, we evaluate the matrix elements of the
Hamiltonian

and the identity operator (the overlap matrix)

in the z-transformed basis:

with zj values to be specified later.
Kwin is the number of windowing functions (see below) and

L the number of initial states.

The summation parameterM is defined by the size,T ) 2M,
of the cross-correlation matrixsRR′(tτ), (t ) 0, ..., T) used in
the analysis.

Due to eq 2 the needed matrix elements ofH andS can be
expressed solely in terms of the cross-correlation signals (see
refs 24, 25, and 27 for derivation). As such forj * j′ we have

and for j ) j′:

The elements ofH are obtained using exactly the same formula
with sRR′(t) replaced byhRR′(t).

Once theS andH matrices are constructed from the cross-
correlation time signals, the generalized eigenvalue problem

is solved to obtain the eigenvaluesεk that can be used to estimate
the true eigenenergiesEk (cf. eq 3). The total number of
eigenvaluesεk is defined by the basis sizeL × Kwin. In the ideal
case of noiseless data and exact arithmetic, a bigger basis would
give more eigenvalues and would increase their accuracy.
However, in practice the number and the accuracy of the
eigenvalues are limited by the very ill-conditioned nature of
the problem and the fact that the time signals are noisy. Note
that usually in FDM the basis is constructed by Fourier
transformation of the time-dependent solution. However, here
the propagation is done along the imaginary time. The choice
of |zj| ) 1 (i.e., on the unit circle) would then correspond to a
Fourier transformation while purely realzj would correspond
to a Laplace transformation. Most generally one can choose a
set of complex numberszj. For the present case of nonoscillatory
signals they should satisfyzj ∼ 1, the most simple choice
corresponding toKwin ) 1 andz1 ) 1. The latter choice also
gives the most stable results and is recommended when dealing
with noisy data. Here we use the Fourier basis, i.e.,|zj| ) 1,
and Kwin > 1, which would in principle result in more
eigenvalues (bigger basis), but for the price of increasing
numerical instability.

4. Results

To test the method, we used the two-dimensional (2D)
harmonic oscillator as a model problem. Since the exact
eigenfunctions and eigenvalues for this problem are known, and
vibrational motion can often be reasonably well represented by
harmonic oscillators, the 2D harmonic oscillator is a suitable
test case for the method. A more complicated model problem
such as a coupled harmonic potential would not present a more
stringent test because QMC is a full many-body method that
does not treat coupled potentials different from uncoupled
potentials.

The Hamiltonian considered here is (in atomic units)

hRR′(â) ) 〈ΦRΦG
-1|HUG(â)|ΦR′ΦG〉

) lim
Nf∞

1

N
∑
n)1

N

wn(â) EL(Rn(â))
ΦR(Rn(â))

ΦG(Rn(â))

HΥk ) EkΥk (3)

HRj,R′j′ :) 〈ΨRj|H|ΨR′j′〉

SRj,R′j′ : ) 〈ΨRj|ΨR′j′〉

ΨRj ≡ ∑
t)0

M

zj
-te-tτHΦR, j)1, 2, ...,Kwin andR ) 1, ...,L

SRj,R′j′ ) (zj - zj′)
-1[zj ∑

t)0

M

zj′
-tsRR′(t) - zj′ ∑

t)0

M

zj
-tsRR′(t) -

zj
-M ∑

t ) M+1

2M

zj′
M+1-tsRR′(t) + zj′

-M ∑
t)M+1

2M

zj
M+1-tsRR′(t)]

SRj,R′j ) ∑
t)0

2M

(M - |M - t| + 1)zj′
-tsRR′(t)

HBk ) εkSBk (4)

H ) - 1
2

∂
2

∂x2
- 1

2
∂

2

∂y2
+ 1

2
kxx

2 + 1
2
kyy

2
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with kx ) 1.0 andky ) 1.21. The exact eigenvalues are

with ωx ) 1.0 andωy ) 1.1 andV, w ) 0, 1, ... . We chose the
initial states in the form

where the exact eigenfunctions are a special case with the
parametersRx ) Ry ) ω. To simulate realistic conditions in
our calculations, we intentionally used different valuesRx and
Ry for the initial statesΦR.

For the guide function, we used the form suggested by
Ceperley

for which the drift term and the local energy are easily calculated
from drift terms and the local energies of the basis functions.

First, we calculated the autocorrelation functionssRR(â) and
hRR(â), where the initial states wereΦR ) Ψ1,0, Ψ0,1, Ψ2,0, Ψ1,1,
Ψ0,2. The time step wasτ ) 0.002. For eachΦR the guide
function close to the corresponding initial state was used:

The autocorrelation functions were averaged overN ) 500 000
random walkers. Each pairsRR(â) and hRR(â) was processed
separately by H-FDM to extract the corresponding single excited
state that was well represented by the initial state. In all cases
the eigenvalues obtained by the standard FDM (processing
sRR(â) alone without explicitly usinghRR(â)) were noticeably
less accurate, so here and throughout the paper we report only
the H-FDM results.

Each H-FDM calculation was carried out usingKwin ) 10,zj

) e-iτæj, andæj ) æmin + [(j - 1)/(Kwin - 1)](æmax - æmin),37

with æmin ) - 3, æmax ) 3, andj ) 1, ...,Kwin. The resulting
10 (complex) eigenvaluesεk were further processed to find the
eigenvalue whose real part would best approximate the corre-
sponding excited-state energyER.

This was done by sorting the eigenvalues according to the
absolute value of their imaginary parts. Starting from the
smallest imaginary part, the real parts were assigned to a state
using approximationsẼR to the exact eigenstates.

The results are not very sensitive to the choice ofæmin and
æmax but depend on the basis size given byKwin. With Kwin )
1 the FDM eigenvalues are most stable and fluctuate more when
Kwin is increased. However, a larger basis (e.g.,Kwin ) 3) gives
faster convergence and higher accuracy after the eigenvalues
are averaged over the processing time.

For each initial stateΦR 10 such independent DQMC
calculations ofs(â) andh(â) were carried out, allowing us to
obtain standard deviations for the calculated eigenvalues. In
Figure 1 we show the results as a function of processing time
â for the lowest five excited states.

Unfortunately, the H-FDM energies fluctuate with processing
time and from run to run. Such fluctuations are a manifestation
of the high sensitivity of the multiexponential fit to even tiny
variations in the time signal. However, because of the statistical

nature of these fluctuations, the results can be considerably
improved by averaging them over independent runs and over
the processing time. The latter averaging was done by discarding
the data withâ < 0.5 au. The resulting H-FDM eigenvalues
are listed in Table 1.While the first two excited states are
obtained accurately, the error bars of the higher excited states
(exceptΨ1,1) are 1 order of magnitude larger. When using only
the autocorrelation functions, it is difficult to improve these
results further as an improvement would require either the use
of better initial states or an enormous increase of the number
of random walkers (to reduce the statistical noise). Furthermore,
construction of each autocorrelation function requires separate
DQMC calculation. However, the information accumulated by
a single DQMC propagation may be used much more efficiently
if the whole cross-correlation matrices are processed by H-FDM
and a single guide functionΦG is used. In this case each random
walk contributes to all the desired matrix elementssRR′(â) and
hRR′(â).

For the cross-correlation calculation we used the same set of
L ) 6 initial states{Ψ0,0, Ψ1,0, Ψ0,1, Ψ2,0, Ψ1,1, Ψ0,2} with Rx

) 0.8 andRy ) 0.9 (denoted as “set II”). With the guide function

ΦG ) x∑R)1
L ΦR

2, all initial states have the same weight and
all elementssRR′(â) and hRR′(â) are obtained from a single
DQMC run usingN ) 500 000 random walkers.

In the H-FDM calculations, we useKwin ) 3 andæmin )
-0.3,æmax ) 0.3 for each initial state. This gives a generalized
eigenvalue problem of sizeL × Kwin ) 18. Following the
procedure described above for the autocorrelation functions, here
six eigenvalues are selected from the list of 18 eigenvalues.
(Approximate eigenenergies are readily available from a H-FDM
calculation withKwin ) 1 andzj ) 1.)

As in the case of the autocorrelation data, the results depend
on the basis size determined byKwin. IncreasingKwin accelerates
the convergence and the accuracy at the expense of increased
numerical instability.

The eigenvalues are shown in Figure 2 as a function of
processing time. The error bar is estimated from the mean square

EV,w ) ωx(V + 1
2) + ωy(w +1

2) )

1.05, 2.05, 2.15, 3.05, 3.15, 3.25, ...

ΦR ) ΨV,w ) HV(xRxx)Hw(xRyy) exp[-
Rx

2
x2 -

Ry

2
y2]

ΦG ) x∑
R)1

n

aRΦR
2

ΦG ) x0.1Φ0
2 + ΦR

2

Figure 1. H-FDM results for the first five excited states of the 2D
harmonic oscillator calculated from imaginary time autocorrelation
functions as a function of processing timeâ.

TABLE 1: Excited States of 2D Harmonic Oscillator and
Their Standard Deviations Calculated by H-FDM Using the
Autocorrelation Functions (Single Initial State)

state exact HFDM

2 2.05 2.0489( 0.0004
3 2.15 2.1503( 0.0007
4 3.05 3.029( 0.005
5 3.15 3.1535( 0.0006
6 3.25 3.243( 0.006
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deviation for 10 independently calculated cross-correlation
functions. The eigenvalues converge very well to the exact
values after only a few time steps and are stable over a wide
range of the processing time. It should be noted that the method
will eventually fail at long times in the current implementation
because of the well-known inherent instability of the pure
diffusion Monte Carlo algorithm.38 The long-time stability of
cross-correlation matrix elements can be improved with branch-
ing QMC algorithms. Here the results are stable for the entire
time interval, which is partly due to the fact that in FDM the
correlation function atall times contributes to the matrix
elements ofH andS.

The present results are extremely accurate for the ground state,
while for the excited states the statistical error increases slowly
with quantum number. Some fluctuations of the estimated
eigenvalues and their error bars can be seen in the inset of Figure
2. These fluctuations have the same origin as those seen for
the autocorrelation function. Again, much better eigenvalue
estimates can be obtained by averaging the results over the
processing time after discarding the first few data points. For
time averaging we usedâ g 0.5 au. The corresponding results
(set II) are summarized in Table 2.

To check how the computed eigenvalues depend on the choice
of the initial states, we repeated the calculations with the same
initial states but using different parametersRx ) 0.6 andRy )
0.7 (set I) andRx ) 0.98 andRy ) 1.08 (set III). Both the low-
quality set (I) and the high-quality set (III) are successful in
calculating all six eigenvalues with a small propagation timeâ
and are as stable with respect toâ as is set II. The averaged
results for the other two sets are also shown in Table 2. Clearly,
the statistical errors decrease when initial states of higher quality
are used. For set I, at short times the cross-correlation matrix
elements contain contributions from many excited states, which
leads to significant overestimation of the exact results by the
computed eigenvalues. For this reason the data forâ < 0.2 au
were discarded. Nonetheless, the results obtained with the poor

set (I) are particularly encouraging as good initial states are
usually unavailable for real problems.

For all three sets we observe only a moderate increase of the
error bars with quantum number. In most cases the H-FDM
eigenvalues overestimate the exact eigenvalues. This bias is
especially obvious for the most accurate set III. Such a bias
could be caused by the variational nature of the computed
eigenvalues. Another reason may be the use of the finite time
stepτ.

The H-FDM requires the same matriceshRR′(â) andsRR′(â)
as the correlation function quantum Monte Carlo method
(CFQMC).10 A direct comparison of both methods is shown in
Figure 3 for two representative (excited) states. H-FDM
converges for much smallerâ and is more stable for large values
of â, while the CFQMC eigenvalues depend more smoothly on
â and have smaller statistical errors. TheE2,0 state demonstrates
the difficulty of finding “the best” eigenvalue estimate when
noplateauexists before the statistical errors increase, while the
H-FDM result is stable over the wide range ofâ.

5. Conclusions

The results presented here show the power of the H-FDM in
extracting eigenvalues from the imaginary-time cross-correlation
functions. The advantages of the method are due to the
incorporation of both multiple spatial information (cross-
correlation between different states evolving in time) and a long-
range time domain information (filter diagonalization). We have
shown that the method is more stable and accurate than either
the regular FDM using an autocorrelation function (i.e., no cross-
correlation) or the method of Ceperley and Bernu using the
cross-correlation functions but for a particular timeâ (i.e.,
without FDM). Notably, the cross-correlation FDM gives well
converged results at very short times (â ∼ 0.5 au), which are
significantly shorter than the inverse spacings between closely
lying eigenenergies (1/∆E ) 10 au).

In our forthcoming publications we will apply QMC-FDM
to realistic multidimensional problems, for which we anticipate
the method to be equally powerful, since the QMC performance
is not sensitive to the details of the Hamiltonian. The method
would be ideal for studies of the lowest few excited states in
large systems, such as He clusters and He-organic clusters.28
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Figure 2. The lowest six eigenvalues of the 2D harmonic oscillator
calculated with H-FDM usingRx ) 0.8 andRy ) 0.9 andτ ) 0.002.
All results are shown with statistical error bars.

TABLE 2: Eigenvalues Calculated Simultaneously withL )
6 Initial States Using Imaginary-Time H-FDMa
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a Sets I, II, and III have increasing quality (see text for parameters).

Figure 3. Comparison of H-FDM with CFQMC using the same cross-
correlation matriceshRR′(â) andsRR′(â). The lower panel (a) showsE1,0,
the upper panel (b)E2,0. Set II with time stepτ ) 0.005 au was used.
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