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As proposed by Ceperley and Bernu, the excited-state energies can be obtained from imaginary-time cross-
correlation functions (rather than autocorrelation functions) generated by quantum Monte Carlo (QMC)
simulations. We show that, when processed by the filter diagonalization method (FDM), the same cross-
correlation functions yield excited-state energies of higher accuracy and greater stability. The reason is that
unlike the other methods FDM uses all the time domain information available. The superior performance of
the cross-correlation FDM is demonstrated for a two-dimensional harmonic oscillator with closely lying
eigenvalues. Because QMC does not take advantage of the separability in the Hamiltonian, this model system
provides a challenging and generic test case.

1. Introduction state energies from imaginary-time autocorrelation or cross-
correlation functions calculated with QMC.

While FDM is very successful in calculating excited states
with real-time autocorrelation function®|e/H|®[]the difficulty
dis in the typically very unfavorable scaling of the computational
effort with the system size, similar to other accurate excited-
state methods. The imaginary-time autocorrelation function
[@|ePH|dOcan be obtained with a quantum Monte Carlo
method that scales much better with the system size.
Due to this scaling property, a QMC-based excited-state
ethod should be particularly well suited for systems with more
than a few degrees of freedom. On the other hand, it will be
analyzed how the statistical noise inherent in QMC influences
the accuracy of the calculated excited states.

Most applications of the quantum Monte Carlo (QMC)
method 2 are ground-state calculations where the ground state
is projected with a random walk, but it is well-known that
excited states can be obtained as well. If the nodes of the excite
states are known, individual excited states can be calculated
with the fixed-node approximatichAn early application was
the tunneling splitting in (HR)® Later developments involved
optimization of the excited-state nodesSeveral studies have
appeared recently where fixed-node-based methods were usegn
to calculate excited states for electronic systéfhs.

The general alternative to the fixed-node approach is to extract
the excited states from the decay of the initial stadeinitial

states-to the ground state. In this case, many excited states There are two approaches for excited-state calculation within

can be Qb_tained simultar_1eous|y arid principle—exactly within __the QMC framework. In the first, and most popular, one extracts
the statistical error. In this approach the ground state and_excnedthe excited-state energies from an autocorrelation function
states are obtained from the part of the quantum simulation that

is usually discarded in ground-state QMC applications, i.e., by
using the data from a short propagation in imaginary tffne
Several such methods have been developed for extracting ) ) .
excited-state information from the random walk. Most widely Possibly using also thei-correlation
used are the correlation function quantum Monte Carlo method
(CFQMC) by Ceperley and Ber#i!! and the projection h(B) = @0|He’ﬁH|<I>OD
operator imaginary time spectral evolution method (POITSE)
by Blume, Lewerenz, and Whalé§'3 The CFQMC approach  where @, is an initial state with appropriate symmetiy, is
has recently been used for calculating rovibrational le¥efs; the full Hamiltonian, and3 is the imaginary time. Here and
the POITSE method has been successfully applied to problemsthroughout the paper we use the non-Hermitian inner product
such as tunneling splittingsand quantum structure in helium
clusterst®-23 BlyC= g0

In this paper we show how to use the filter diagonalization
method (FDM), a method developed and presented in severallf ®q has a nonzero overlap with the lowest state of chosen

S(B) = [@yle ™| Dy

recent publications (see, e.g., refs-BD), to obtain excited-  symmetry, the resulting autocorrelation function will be domi-
nated by the monoexponential desf§) ~ e #& for sufficiently
IPaljt of the special issue “Donald J. Kouri Festschrift”. large 5, whereE, is the corresponding eigenenergy.d¥ is
Heinrich-Heine-UniversitaDusseldorf. made completely or approximately orthogonal to the ground
§ University of California, Los Angeles. . . .
I Hebrew University of Jerusalem. state, the correlation functios(f) would contain a large
B University of California, Irvine. contribution from the first excited state of given symmetry.
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If the initial state®, is dominated by several states of interest 2. Computing Correlation Functions by Quantum Monte
and the time signad(8) is computed with sufficiently high  Carlo
accuracy, in principle all the corresponding eigenenergies may

Usually the diffusi tum Monte Carl thod (DQMC
be extracted by fittings(3) by the multiexponential decay sually the diffusion guantum Monte Carlo method (DQMC)

is used to project an arbitrary initial stalg to the ground state
K Wy However, in the present framework, we are not interested
sB) = d.e FE« 1) in the long-time  — ) limit W, but in the information
k; K generated by DQMC during short propagation tithe
For a set of initial state®, the cross-correlation functions

. . N . (n) and hye n m ing DOQMC:
Practically though a multiexponential fit cannot be carried out Su() andhee(F) can be computed using DOMC

reliably because the corresponding inverse problem is extremely 1N

ill-conditioned, leading to very high sensitivity d to even s B = le™Md . =lim=S w ® (R
tiny variations ins(8). Note that this problem is closely related () ol [P N—eo N nZl A) PoRel))
to the inverse Laplace transform probléhwhich has similar

numerical properties. Generally for noisy data only a monoex- where{ R(3)} denotes a sample of random walker positions at
ponential fit may be carried out reliably, i.e., wheby is propagation timg8 and walker weightv,. The initial random
dominated by a single state of interest. Specifically, for the \walker positionsR,(0) are sampled from a distributiqe(R),
ground-state calculatio® could be chosen to be a Gaussian and the initial weights are(0) = ®(Rn(0))/p(Rn(0)). As in

that coincides with the ground state in harmonic approximation. other applications of the quantum Monte Carlo technique, the
For a Gaussian distribution, sampling of the initial conditions  statistical accuracy of the calculated integrals is greatly increased
for the random walks is also very efficient. For a general, e.g., when importance sampling is employe®Importance sampling
excited-state, calculation the situation is much more complicated. is realized with aguide function®g and a drift step in the

As suggested in refs 12 and 13, one could implement an random walk toward large values ¢Pg|. Additionally, the
appropriate projection operatdr, — Adq that projects, say a  random walk is stabilized numerically by introducing a reference
Gaussian, to the first excited state by incorporating the corre- energyE,f &~ Eo that shifts the energy such that the lowest
sponding symmetry and/or nodal structure. However, in the caseeigenvalue becomes approximately zero. The propagator with
of strong anharmonicity or for a multidimensional system, such importance sampling is

a wave function could be quite different from the true state of

interest (even a small deviation in every dimension would lead Ug(B) = De M Bl

to a large overall deviation). This will require solving eq 1 with
large K, making the method impractical.

Another approach to ameliorate the problEwhich is less
often applied, aims at extracting the information from the cross-

and the cross-correlation functions can be calculated™®vith

— -1
correlation matrices Suw(B) = @, Dg " |Ug(B)| P P
BH y 1 N ® @, (Ry(A))
s (B) =[P e "D 0O =lim-3 w -
P, N OR,(6)
ho(B) = @, [He ™| d,,0 @)

where {Rn(5)} again denotes a sample of random walker

Here, several different initial stated{) are used. The cross-  Positions at propagation timg and w,, the corresponding
correlation matrices contain more information than a single Weights. There are several ways to realize the importance-
correlation function; however, until recently it was not clear Sampled random walk, but we employ here only the simplest:
how to utilize this information most efficiently for the eigenen-  the pure DQMC algorithm described by Caffarel and Clavérie.
ergy calculations. Therefore, applications of matrix correlation !N this algorithm, no branching is used and the weight is
functions have generally used subspace diagonalization, a@ccumulated along the random walker trajectory at evenly
method in which the generalized eigenvalue problem associated®@mpled pointg = tz (t = 0, ..., T) according to
with s(8) andh(p) is solved at a particular value @f (which
may then be varied for stability), i.e., not using simultaneously @, (R,(0)) T
all the information available. Wi(tr) = ——— l_l exr{ — E (Ry(mr)) — Eref]}

- - - - Dg(R(0)) m= h

In this work we combine several methodologies mentioned

above and take advantage of using the cross-correlation matrices . I
rather than just a single correlation function, which are then With the local energy E(Rn) = ®6™(Rr) HPo(Rn) and the

processed by FDM. As we show, the use of FDM allows, for a initial walker positiong R,(0)} drawn from the distributiop(R)
model problem, extraction of very high quality excited-state

= |®g(R)|¥[@c|DPsLI This distribution is easily obtained with

eigenvalues. a standard va}riational quanFum qute Carlotrwhich is based
. . , on a generalized Metropolis algorithth3®
The rest of the paper is organized as follows. First we present Similarly we can calculate the cross-correlation functiagns

the methodology of the QMC calculation. Here we use the most (8) with
primitive version possible, since in this publication our focus
is to demonstrate the effects of FDM. Therefore, we do not use h (8) =@ |He’ﬂH|<I> 0
sophisticated guiding functions which would have improved the oa’ o o
results further. Next, we review the FDM methodology, as used 1 N

here. A discussion of a model problem is followed by conclu- =lim — ) w,(8) E.(R,(B)) P, (R.(B))
sions. N—o N =
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When employing importance sampling, we obtain analo-
gously0

haa’(ﬁ) = m)onq)G_l| HUG(ﬂ)|cD(x’q)GD

Do(RA(5))
Do(RA(5))

The use of the cross-correlation functiagg (8) andhge ()
with importance sampling and pure diffusion quantum Monte
Carlo was proposed by Ceperley and Bethiiwho used both
matrices for their correlation function quantum Monte Carlo
method (CFQMC) to extract excited states.

For a given sample sizd the statistical accuracy & (5)
depends on the variance of the fractighgR)/®s(R) andd -
(R)/®g(R) and the variance of the local energy(R). All three
variances are small only wheb, ~ &, ~ &g and g is a
good approximation to an eigenfunctiontdf Obviously, these

= I|m N ZWn(ﬂ) ELRB))———

conditions cannot be met for many excited states. There are

now two choices. One may attempt to extract a single excited
state using only one functio®,, which approximates the
excited state of interest. The guide functidag is then naturally
chosen to resemblgb,|. In this case only the autocorrelation
functionss,«(8) andhy(f) are used, and for each excited state

a guide function needs to be constructed and a separate random

walk needs to be performed.
Another possibility is to use a single guide function for all

excited states and use a set of initial states that approximatelye
span the space of the excited states of interest. Now the same,

random walk can be used for calculation of all e andhyy
matrix elements, i.e., with minimal loss of data.

3. The Filter Diagonalization Method
In this section we describe the H-FDM version of the filter
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The summation parametbt is defined by the sizell = 2M,
of the cross-correlation matrig,(tz), (t = 0, ..., T) used in
the analysis.

Due to eq 2 the needed matrix elementdHoénd S can be
expressed solely in terms of the cross-correlation signals (see
refs 24, 25, and 27 for derivation). As such for |’ we have

S = —2)" [%Z)% Suoet) — 2 Z)% Syee(t) —
2M

Z]_*M t:%-'—l Z]-,M+l t aa'(t) + Zj'

M+1—- t

% Suar (V)]

and forj = j":

2M
S = Z’(M — M=t + 1)z, ',0(t)
=

The elements ofl are obtained using exactly the same formula
with sy (t) replaced byhge(t).

Once theS andH matrices are constructed from the cross-
correlation time signals, the generalized eigenvalue problem

(4)

is solved to obtain the eigenvalugghat can be used to estimate
the true eigenenergieBx (cf. eq 3). The total number of
igenvaluesy is defined by the basis sizex Kyin. In the ideal

ase of noiseless data and exact arithmetic, a bigger basis would
give more eigenvalues and would increase their accuracy.
However, in practice the number and the accuracy of the
eigenvalues are limited by the very ill-conditioned nature of
the problem and the fact that the time signals are noisy. Note
that usually in FDM the basis is constructed by Fourier

diagonalization method designed to solve the eigenvalue transformation of the time-dependent solution. However, here

problem

HY, = EYy 3)
H-FDM differs from the previous implementations of FBWF’
in that both cross-correlation matriceg, () and hqy(5) (cf.
eq 2) are used explicitly (as proposed in refs 26 and 36).
The true system Hamiltoniafl is Hermitian. However,
because of the noise and numerical instabilities, it is not
recommended to implement the hermiticity constraint, but rather
treatH as a non-Hermitian, but complex symmetric operator
with eigenvalues, not necessarily on the real axis.
To solve eq 3, we evaluate the matrix elements of the
Hamiltonian

H (W, [HI W, 0

aj,aj’ =
and the identity operator (the overlap matrix)

S

i L =

(W | W O

in the ztransformed basis:
M
W, = Z)z;te‘””qaa, j=1,2,...K,,anda=1, ....L
=

with z values to be specified later.
Kwin 1S the number of windowing functions (see below) and
L the number of initial states.

the propagation is done along the imaginary time. The choice
of |z| =1 (i.e., on the unit circle) would then correspond to a
Fourier transformation while purely real would correspond

to a Laplace transformation. Most generally one can choose a
set of complex numbe For the present case of nonoscillatory
signals they should satisfg ~ 1, the most simple choice
corresponding t&yi, = 1 andz = 1. The latter choice also
gives the most stable results and is recommended when dealing
with noisy data. Here we use the Fourier basis, |#.= 1,

and Kyin > 1, which would in principle result in more
eigenvalues (bigger basis), but for the price of increasing
numerical instability.

4. Results

To test the method, we used the two-dimensional (2D)
harmonic oscillator as a model problem. Since the exact
eigenfunctions and eigenvalues for this problem are known, and
vibrational motion can often be reasonably well represented by
harmonic oscillators, the 2D harmonic oscillator is a suitable
test case for the method. A more complicated model problem
such as a coupled harmonic potential would not present a more
stringent test because QMC is a full many-body method that
does not treat coupled potentials different from uncoupled
potentials.

The Hamiltonian considered here is (in atomic units)

A

NS0 24y

1
2|<XX2 + Ekyyz
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with ke = 1.0 andk, = 1.21. The exact eigenvalues are

1
E E) + (,Uy(

v,W

2
1.05, 2.05, 2.15, 3.05, 3.15, 3.25, ...

= wx(u + w +1') =

with wy = 1.0 andwy = 1.1 andv, w=0, 1, ... . We chose the
initial states in the form

B, =W, = H M () x] - 2~ 2]

where the exact eigenfunctions are a special case with the
parametersy, = oy = w. To simulate realistic conditions in
our calculations, we intentionally used different valegsand
o for the initial statesb,.

For the guide function, we used the form suggested by
Ceperley

for which the drift term and the local energy are easily calculated

from drift terms and the local energies of the basis functions.
First, we calculated the autocorrelation functieag5) and

hao (), Where the initial states were, = W10, Wo1, W2,0, P11,

Wy The time step was = 0.002. For eachb, the guide

function close to the corresponding initial state was used:

O = 4/0.1D,° + D2

The autocorrelation functions were averaged dver 500 000
random walkers. Each pag(3) and hy.(3) was processed
separately by H-FDM to extract the corresponding single excited
state that was well represented by the initial state. In all cases
the eigenvalues obtained by the standard FDM (processing
sua(B) alone without explicitly usind,.(8)) were noticeably
less accurate, so here and throughout the paper we report onl
the H-FDM results.

Each H-FDM calculation was carried out usikgi, = 10,z
= e, andg; = @min + [(j — L)/(Kwin — DI (@max — @min),*’
With @min = — 3, ¢max = 3, andj = 1, ..., Kyin. The resulting
10 (complex) eigenvalues were further processed to find the
eigenvalue whose real part would best approximate the corre-
sponding excited-state energy.

This was done by sorting the eigenvalues according to the
absolute value of their imaginary parts. Starting from the

smallest imaginary part, the real parts were assigned to a state™

using approximation&, to the exact eigenstates.
The results are not very sensitive to the choicepgf, and
@max but depend on the basis size givenKyin. With Kyin =
1 the FDM eigenvalues are most stable and fluctuate more when
Kwin is increased. However, a larger basis (ekgin = 3) gives

Lichow et al.
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Figure 1. H-FDM results for the first five excited states of the 2D

harmonic oscillator calculated from imaginary time autocorrelation
functions as a function of processing tifie

TABLE 1: Excited States of 2D Harmonic Oscillator and
Their Standard Deviations Calculated by H-FDM Using the
Autocorrelation Functions (Single Initial State)

state exact HFDM
2 2.05 2.0489% 0.0004
3 2.15 2.1503k 0.0007
4 3.05 3.029t 0.005
5 3.15 3.1535k 0.0006
6 3.25 3.243t 0.006

nature of these fluctuations, the results can be considerably
improved by averaging them over independent runs and over
the processing time. The latter averaging was done by discarding
the data withg < 0.5 au. The resulting H-FDM eigenvalues
are listed in Table 1.While the first two excited states are
obtained accurately, the error bars of the higher excited states
(except¥, ;) are 1 order of magnitude larger. When using only
the autocorrelation functions, it is difficult to improve these
results further as an improvement would require either the use
of better initial states or an enormous increase of the number

)pf random walkers (to reduce the statistical noise). Furthermore,

construction of each autocorrelation function requires separate
DQMC calculation. However, the information accumulated by
a single DQMC propagation may be used much more efficiently
if the whole cross-correlation matrices are processed by H-FDM
and a single guide functioig is used. In this case each random
walk contributes to all the desired matrix elemesis(s) and
haa (B).

For the cross-correlation calculation we used the same set of
L = 6 initial states{ 1IJ()'Q, 1Pl,01 lpoyj_, ‘I’z,o, lIJ]_';L, 11]012} with Olx
0.8 anda, = 0.9 (denoted as “set II"). With the guide function
@ = 4/Y5_, @7 all initial states have the same weight and
all elementssy(8) and hy(B) are obtained from a single
DQMC run usingN = 500 000 random walkers.

In the H-FDM calculations, we uski, = 3 and @min =
—0.3, pmax= 0.3 for each initial state. This gives a generalized

faster convergence and higher accuracy after the eigenvaluesigenvalue problem of size x Kyin = 18. Following the

are averaged over the processing time.

For each initial stated, 10 such independent DQMC
calculations ofs(8) and h(j3) were carried out, allowing us to
obtain standard deviations for the calculated eigenvalues. In
Figure 1 we show the results as a function of processing time
S for the lowest five excited states.

Unfortunately, the H-FDM energies fluctuate with processing
time and from run to run. Such fluctuations are a manifestation
of the high sensitivity of the multiexponential fit to even tiny
variations in the time signal. However, because of the statistical

procedure described above for the autocorrelation functions, here
six eigenvalues are selected from the list of 18 eigenvalues.
(Approximate eigenenergies are readily available from a H-FDM
calculation withKyin = 1 andz = 1.)

As in the case of the autocorrelation data, the results depend
on the basis size determined Ky;n. Increasind{vin accelerates
the convergence and the accuracy at the expense of increased
numerical instability.

The eigenvalues are shown in Figure 2 as a function of
processing time. The error bar is estimated from the mean square
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Figure 2. The lowest six eigenvalues of the 2D harmonic oscillator Figure 3. Comparison of H-FDM with CFQMC using the same cross-
calculated with H-FDM usingy = 0.8 anda, = 0.9 andz = 0.002. correlation matriceby(8) ands,«(8). The lower panel (a) shov ,
All results are shown with statistical error bars. the upper panel (b2 Set Il with time stepr = 0.005 au was used.

TABLE 2: Eigenvalues Calculated Simultaneously withL =

6 Initial States Using Imaginary-Time H-FDMa set (I) are particularly encouraging as good initial states are

usually unavailable for real problems.

state exact set | set Il set Il .
For all three sets we observe only a moderate increase of the
; %-82 %-8;‘%8%8630005 %'ggggt&oodgggos %-8gggi 8-88883 error bars with quantum number. In most cases the H-FDM
3 215 2157 0.002 5 1506t 0.0007  2.1503@ 0.00003 elgen\(alues overestimate the exact eigenvalues. This bla.s is
4 3.05 3.06L 0.003 3.0478 0.0010  3.0505@ 0.00003 especially obvious for the most accurate set Ill. Such a bias
5 3.15 3.16% 0.003 3.1480- 0.0013  3.15038& 0.00002 could be caused by the variational nature of the computed
6

3.25 3.264+0.003 3.2486£ 0.0015  3.2504% 0.00003 eigenvalues. Another reason may be the use of the finite time
aSets |, Il, and Il have increasing quality (see text for parameters). St€pT.

The H-FDM requires the same matricesg,(5) and sy« ()
deviation for 10 independently calculated cross-correlation as the correlation function quantum Monte Carlo method
functions. The eigenvalues converge very well to the exact (CFQMC)2° A direct comparison of both methods is shown in
values after only a few time steps and are stable over a wide Figure 3 for two representative (excited) states. H-FDM
range of the processing time. It should be noted that the methodconverges for much smallgrand is more stable for large values
will eventually fail at long times in the current implementation  of B, while the CFQMC eigenvalues depend more smoothly on
because of the well-known inherent instability of the pure g and have smaller statistical errors. T, state demonstrates
diffusion Monte Carlo algorithn#® The long-time stability of  the difficulty of finding “the best” eigenvalue estimate when
cross-correlation matrix elements can be improved with branch- no plateauexists before the statistical errors increase, while the
ing QMC algorithms. Here the results are stable for the entire H-FDM result is stable over the wide range &f
time interval, which is partly due to the fact that in FDM the
correlation function atall times contributes to the matrix 5 conclusions
elements oH andS.

The present results are extremely accurate for the ground state, The results presented here show the power of the H-FDM in
while for the excited states the statistical error increases slowly extracting eigenvalues from the imaginary-time cross-correlation
with quantum number. Some fluctuations of the estimated functions. The advantages of the method are due to the
eigenvalues and their error bars can be seen in the inset of Figurdncorporation of both multiple spatial information (cross-
2. These fluctuations have the same origin as those seen forcorrelation between different states evolving in time) and a long-
the autocorrelation function. Again, much better eigenvalue range time domain information (filter diagonalization). We have
estimates can be obtained by averaging the results over theshown that the method is more stable and accurate than either
processing time after discarding the first few data points. For the regular FDM using an autocorrelation function (i.e., no cross-
time averaging we use6l > 0.5 au. The corresponding results correlation) or the method of Ceperley and Bernu using the
(set Il) are summarized in Table 2. cross-correlation functions but for a particular tinie(i.e.,

To check how the computed eigenvalues depend on the choicewithout FDM). Notably, the cross-correlation FDM gives well
of the initial states, we repeated the calculations with the same converged results at very short timgs+ 0.5 au), which are
initial states but using different parametess= 0.6 andoy, = significantly shorter than the inverse spacings between closely
0.7 (set I) and = 0.98 anday = 1.08 (set Ill). Both the low-  lying eigenenergies (ME = 10 au).
quality set (I) and the high-quality set (Ill) are successful in  In our forthcoming publications we will apply QMC-FDM
calculating all six eigenvalues with a small propagation tfine  to realistic multidimensional problems, for which we anticipate
and are as stable with respectfas is set Il. The averaged the method to be equally powerful, since the QMC performance
results for the other two sets are also shown in Table 2. Clearly, is not sensitive to the details of the Hamiltonian. The method
the statistical errors decrease when initial states of higher qualitywould be ideal for studies of the lowest few excited states in
are used. For set |, at short times the cross-correlation matrixlarge systems, such as He clusters and-étganic clusterg?
elements contain contributions from many excited states, which
leads to significant overestimation of the exact results by the  Acknowledgment. V.A.M. acknowledges support from the
computed eigenvalues. For this reason the dat# fer0.2 au NSF, Grant CHE-0108823, and an Alfred P. Sloan research
were discarded. Nonetheless, the results obtained with the poorfellowship. D.N. acknowledges discussions with Peter Felker
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